Search results for "moving panel"
showing 3 items of 3 documents
Stability of moving viscoelastic panels interacting with surrounding fluid
2012
We study a model describing the out-of-plane vibrations of an axially moving viscoelastic panel submerged in flowing fluid. The panel is assumed to travel at a constant velocity between two fixed supports, and it is modeled as a flat panel made of viscoelastic Kelvin-Voigt material. The fluid flow is modeled with the help of the added mass coefficients. The resulting dynamic equation is a partial differential equation of fifth order in space. Five boundary conditions are set for the studied problem. The behavior of the panel is analyzed with the help of its eigenvalues (eigenfrequencies). These characteristics are studied with respect to the velocity of the panel. In our study, we have incl…
Added-Mass Based Efficient Fluid–Structure Interaction Model for Dynamics of Axially Moving Panels with Thermal Expansion
2020
The paper considers the analysis of a traveling panel, submerged in axially flowing fluid. In order to accurately model the dynamics and stability of a lightweight moving material, the interaction between the material and the surrounding air must be taken into account. The lightweight material leads to the inertial contribution of the surrounding air to the acceleration of the panel becoming significant. This formulation is novel and the case complements our previous studies on the field. The approach described in this paper allows for an efficient semi-analytical solution, where the reaction pressure of the fluid flow is analytically represented by an added-mass model in terms of the panel…
Variational approach for analysis of harmonic vibration and stabiligy of moving panels
2014
In this paper, the stability of a simply supported axially moving elastic panel (plate undergoing cylindrical deformation) is considered. A complex variable technique and bifurcation theory are applied. As a result, variational equations and a variational principle are derived. Analysis of the variational principle allows the study of qualitative properties of the bifurcation points. Asymptotic behaviour in a small neighbourhood around an arbitrary bifurcation point is analyzed and presented. It is shown analytically that the eigenvalue curves in the (ω, V0) plane cross both the ω and V0 axes perpendicularly. It is also shown that near each bifurcation point, the dependence ω(V0) for each m…